4 research outputs found

    Concurrent Dual Band Radio-over-Fiber Transmission Using 1-bit Envelope Delta-Sigma Modulation

    Get PDF
    With the growing demand for bandwidth and transmission speed, mobile communication network designs must stay adaptable, efficient and cost-effective. A key integration has been Radio-over-Fiber (RoF) transmission systems that provide a cheaper option and low loss for high frequency signal transfer. For the optical transmitter, delta-sigma modulation (DSM) can be a beneficial addition. The partnership simplifies the Digital-Radio-over-Fiber setup by removing the need for additional converters and prompts adjustments based on system need. Main factors in delta-sigma modulators are the amount of quantization bits and the order of the modulator. Changing quantization bits to a single bit allows the system to use less processing bandwidth and less error experienced from optical transmission. High order structures provide more noise shaping to shift noise away from the band of interest. Still, such setups are prone to linearity problems due to clock jitter from multiple feedback loops. Different adaptations of delta-sigma modulation have been designed to combat the problems, but a key standout is the implementation of an envelope delta-sigma modulation (EDSM). Envelope delta-sigma modulation’s separate processing of envelope and phase delivers time alignment and noise shaping counter the negative implications from high order DSMs. Combining envelope delta-sigma modulation with RoF transmission is an attractive option, but research has yet to delve into carrier aggregation with these setups. This thesis explores concurrent dual band 64-QAM 20 MHz LTE Radio-over-Fiber using 1-bit envelope delta-sigma modulation. It expands transmitter functionality by concurrent signal integration. Inside the EDSM is a 4th order bandpass delta-sigma modulator custom tailored one of two carrier frequencies. The two frequencies come from two different LTE bands to show interband compatibility. The carrier frequencies are 2.112 GHz from LTE band 1 and 2.64 GHz from LTE band 7. Simulation and experimental results confirm the functionality of the proposed envelope delta-sigma modulation RoF system in single and dual band for LTE standards (error vector magnitude < 8%). Experimental results confirm that EDSM is more resilient to RoF transmission than BP-DSM. However, the EVM values for BP-DSM are better for carrier aggregated transmission

    Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses

    Get PDF
    The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.Peer Reviewe

    Refining the evolutionary tree of the horse Y chromosome

    Get PDF
    The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity
    corecore